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On the basis of  the authors' earlier closed equation for the joint probability density function of  pulsations o f  
an isotropic turbulent scalar field and its gradient, we derived and solved numerically a system of  equations 
for the single-point probability density and conventional rate of  scalar dissipation (CRSD) of  fluctuations 
of  a passive scalar field. In closing the equation for the CRSD, the hypothesis that the effect of  pulsations 
of  this function on its evolution is of no consequence is adopted. The system includes equations for functions 
that describe the distribution of  turbulent energy and the intensity of  scalar pulsations over different length 

scales. 

1. Introduction. The development of theoretical models of turbulent combustion requires rather thorough 
information about the statistical properties of the gradient of a scalar turbulent field. In [1 ] a dosed equation was 
derived for the joint probability density function (JPDF) of a reactive scalar field and its gradient. Precisely this 
level of description of the statistics of the scalar-field gradient is needed to solve many problems of turbulent 
combustion [2]. However, solution of the equation obtained in [1 ] for the JPDF seems difficult at present because 
of the multidtmensionality of this function. Therefore, in the present work we attempted to solve a simpler problem, 
namely, derivation and numerical solution of an equation for the CRSD. This function means the mean value of 
the rate of dissipation of the intensity of scalar fluctuations calculated at the point (~, t), provided that at this point 

the following value of the scalar-field fluctuation is realized: 

c 0 = r ,  O) 

i.e., actually we deal with calculation of the rate of dissipation on the isoscalar surface defined by (1). The value 

of the conventional dissipation depends on the parameter F. We will denote this function by the symbol X~, t (I'). 
The CRSD is related to the JPDF of the scalar and its gradient by the formula 

xzt 03 = D f f f w 2 Pzt (w, r) d //Zt (r) . (2) 

Here D is the diffusion coefficient; P~, t(W, F) is the joint probability density function of fluctuations of the scalar 
and its gradient; ~ t(F) is the probability density of scalar-field fluctuations. 

The need to study the CRSD is dictated by the demands of the development of various approaches to the 
problems of turbulent combustion. The flamelet approach to the description of turbulent reactive flows with 
combustion, which has been developed intensely in recent years [2-4 ], allows one to take account of the deviation 

from local chemical equilibrium and to separate effectively the description of the processes of chemical reaction 
from the description of turbulence. Flamelet models are based on the assumption that a turbulent flame consists 
of thin one-dimensional zones of reaction (flamelets), each being situated in a locally laminar surrounding. The 
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equations within the framework of these models that describe the mass-mean fractions of the reagents and the 
mean temperature, as a function that carries information about the turbulence, contain the rate of dissipation of 

the passive scalar (the coefficient of the mixture), which is calculated on a stoichiometric surface, i.e., actually the 
CRSD function. 

In [S, 6 ] a new approach to the problem of closing the equations that describe turbulent reactive flows is 
suggested; it is based on calculation of mean values that are due to the local instantaneous value of the coefficient 

of the mixture. This system contains the CRSD as an important characteristic of the turbulent scalar field. 
At the present time the CRSD is used successfully to describe supersonic turbulent combustion [7 ]. On the 

basis of the flamelet concept effective methods for predicting ejections of nitrogen oxides have been developed [8 ]. 
As is known [9 ], the CRSD determines the evolution of the single-point of probability distribution density (PDD) 

of scalar fluctuations ~ t(F). However, even now there is no generally accepted model for this function, which is 

widely used in the theory of turbulent reactive flows. What has just been said allows the conclusion that the CRSD 
is required in various approaches to the description of turbulent reactive flows. 

An expression for the CRSD was obtained in [10, 11 ] using the method of a mapping function. In this 

approach the form of the function of the conventional rate of dissipation obtained in [10 ] and in at least one of the 
variants of [11 ] turned out to be independent of time. At the same time, the results of a calculation of the CRSD 

carried out on the basis of direct numerical simulation of a turbulent scalar field show that during the evolution of 
a mix ing  scalar field the form of this function undergoes substantial changes [12]. This is confirmed by an 

experimental s tudy of the CRSD in various turbulent flows [13-15 ]. 

In [16 ] an explanation is suggested for the complicated transformation of the form of the CRSD using the 

assumption of characteristic modes of a turbulent scalar field that change during evolution. More important, how- 
ever, is the problem of constructing a statistical model for the CRSD that is based on the use of averaged charac- 

teristic~ of turbulence. 

We made an attempt to derive a dosed system of equations to calculate the evolution of the CRSD during 
the mixing of a passive scalar field by an isotropic turbulent field of velocity on the basis of the equation that was 

obtained in [1 ] for the JPDF of the values of fluctuations of a scalar field and its gradient. The equation for the 

CRSD turns out to be associated with the single-point PDD of the magnitudes of fluctuations of the scalar ft(F). 
Therefore, for this function the well-known equation that also contains Xt(I') is written [9, 11 ]. 

The equations for Xt(I') and ft(I') together with auxiliary equations for the functions Pt(r) and t~tC)(r), 
which are required to calculate the coefficients in the equation for Xt(F) and which describe the distribution of 
turbulent energy and the intensity of scalar fluctuations over different length scales, are solved numerically. 

2. Derivation of the Equation for the CRSD from the Closed Equation for the JPDF Pt(W, I'). By definition, 

the CRSD is related to the JPDF of the scalar gradient and the scalar by formula (2). Since the integrand in (2) 
is scalar, the three-dimensional integral can be reduced to a one-dimensional one: 

0 

With account for this formula, expression (2) acquires the form 

Zt (F) ft (F) = 4~zD ~ W 4 Pt (W, F) dW.  
0 

(4) 

In the case of a passive scalar field the equation for Pt(W, F) is given by formula (117) from [1 ] without 

the last term, which describes the action of a chemical source. Multiplying the left- and right-hand sides of the 
equatior for Pt(W, F) by 4nDW 4 and integrating over the variable W from 0 to o% we obtain 

o 4 .w , w ~ . . . .  (W, F) d W  + 
Ot o o 0F2 Pt 
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o X(O Pt(W'F) aw- 

l :  o] _4,~D2Nt(r) ] ..4 o + e t ( w . r ) d w - ~ D  2--~ x 
o OW OF 

In equality (5) the terms that describe the effect of the rate of chemical reaction are omitted, since the aim 

of the present work is restricted to the derivation of a closed equation for the conventional rate of dissipation of 
fluctuations of a passive scalar field. Let us write equality (5) in symbolic form: 

0 
O-t (0) = (I) + (II) + (III) + (IV). (6) 

We transform each of the terms of equalities (5) and (6). Use of (4) gives the following relation: 

(0) = OcD f I ~  Pt (W, I') d W  -- Xt (I') ft CO. (7) 
o 

For (I) we have 

O) 4=~ ~ .7 w ~ ~ ~ = _  m ( w , r ) d w = - - - 4 ~  ~ W2(DW)2p t (w , r )dw.  
0 aF2 Pt aF 2 0 

(8) 

We introduce the notation 

2 4:r .~ W 2 (DW2) 2 Pt (W, r)  aB e = Zt (F) f t  (I') . (9) 
0 

As is seen from the definition, the function Xt2(F) is the mean square of the conventional rate of scalar 
dissipation. With account for (9), the expression for (I) takes the form 

(I) = ~  ~ 
(10) 

For (II) we obtain 

( ( I I ) = 4 : ~ O 4 k l S v )  ~ W4 3 +  W 2 1 - - -  
o 

x (t) Pt (W, I') d W  = 

[ f DW 2 

u  15v) 2 0 X (t) 

X (t) ] Pt (W, F) 
w {o.} }] 

- 5"4:rD ? W 4 1 -~-~ v , ( w , r ) a w  . ( l l )  
W=O 0 

The second term on the right-hand side of (11) is equal to zero, and therefore 
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(e(t)l ( (II)=-Suc(t)4k-T'~v] 4~D ~f W 4 I - ~ 
0 

D.~..~) Pt (W, F) dW = 

t 2 . [  
Suc(O V~-i37) t (r) x(t) It (r) . 

In writing (12), use was made of notation (9). The term (III) has the form 

(III)= -- 4zD 2 N t (r) f w 4 o + e t  (w ,  r') d W  = 
o #W 

= - 4,~D 2 ~Vt 0 3  2 pr (w,  13 w-~o - 3 ~ e t  (W, r) d - 
o 

W -~--~Pt(W,F) 4 ~ 3 0 �9 -- -- W " ~  Pt (IV, r )  d . w=o o 

The nonintegral terms in (13) are equal to zero, and therefore 

{ "  [ I ] ( III )  - 4 z D  2 N t (F) - 6 f W 2 Pt  (IV, r )  arv- 4 w3 J't ( w ,  r) w = |  = + 
0 W=0 

+ 12 ? W2pt(w,F) d =-6D2Nt(F) 4z f W2Pt(WIF)ft(F)dW. 
o o 

Account for the normalization condition 4 z f  W2Pt(W/F)dW- 1 brings (14) to the following form: 
o 

(III) = - 602 N t (r) ft (r) . 

For the term (IV) we obtain 

(IV)=-8~D20-~ [ Xt(F) ~0 W4 (3+W-O-w) Pt(W'I')dW] = 

i = - -  ~D2 0-~ t (r) a ] w 4 Pt (w ,  r) dW + w 5 et  (w,  r)  w:o 
0 

The nonintegral term in (16) is equal to zero, and therefore 

Using (4), we have 

(IV) = 4D ~ [X t (F) gt (F) ft (1") 1. 

Substituting the calculated expressions (O)-(IV) into (6), we obtain the equation 

(12) 

(13) 

(14) 

( i s )  

(16) 

(17) 

(18) 
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__ _ ~  2 _ .f(~V/e(t)/ a [xt (r) /t (r)] = 02 [ xt (r) /t (r)] Svc (O x 
or  2 - -  ~-~-v ) ot 

[X 2Xt 
x t ( r )  ( r )  .re ( r )  - 6D 2 N t ( r ) / ,  ( i ' )  + 4D afr__ rxt ( r )  xt (r), ' ,  ( r ) ] .  (18) 

X (0 L J 

As a hypothesis for simulating the unknown expression for the mean square of the CRSD Xt2(F) we adopt 
the following: 

2 
Xt (F) = Xt (I~ Xt (F) . (2o) 

In writing a formula for Xt2(F) in the form of (20), the effect of pulsations of the CRSD on the evolution of 
thi.~ function is assumed to be unimportant. For further transformation of (19), we shall avail ourselves of equalities 
(91) for Nt(l") and (99) for Xt(r) from [1 ]. As a result we obtain 

_.o [zt (r).,,t 0r)] = - ~ [x~ ( r ) h  (r)] - 
Ot or  2 

[ - -  [15v ) Suc (t ) ; 1 x (t) zt ( r )  / t  ( r )  + 

r, l(Iv) D 2 [K, (f) ] + . . cc  (o, t) ~rt (r) / t  (r) + 4D , , ,  exp ( -  ,~ (79 r ) xt (r) / t  (r) 

Here, in conformity with formulas (91), (92), (101), (105), (108), and (109) from [1 ] 

(21) 

(22) 

T (t) = ~2- X (t) , a (T) = 27T 2 (t) ," 

d nov)  (0, t) 8 [5 - 972 (t) ] 3n ( c 2 ( 0 ) . . c c  

(23) 

K t (r) = x (t) ,~ (~),  

6D d (  c 2 ( 0 )  

1 
(24) 

r r (2n + 1) (20  
N ( n ) =  F ( 2 n + 3 / 2 )  ' 

where F(x) is the gamma function, r = F/V~c2(t). 
3. An Equation for the Single-Point Probability Distribution Density of Values of the Scalar. Equation (21) 

contains the single-point probability distribution density function (PDDF) f t (r) .  For this function, we can write an 
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equation in a form that contains Xt(r) on the fight-hand side as an unknown function. It is obtained from the 
equation for the JPDF Pt(W, I') using the formula 

ft (F) = 4~ ~ W 2 Pt (IV, F) dW. (26) 
0 

Multiplying by 4~tW 2 the left- and fight-hand sides of the equation for Pt(W,, F) with discarded chemical 
source terms (see (117) in [1 ]) and integrating over W from 0 to 0% we can arrive at the following form of the 

equation for f t ( r ) :  

0 2 
- -  

Ot 0F 2 
(27) 

Equation (27) must be solved together with Eq. (21) for Zt(Y). In this system the external parameters are: 
the kinematic coefficient of diffusion of the scalar D; the kinematic coefficient of viscosity v; the asymmetry of the 
joint probabifity density function of the values of the velocity gradient and the scalar gradient Sue(t); the fourth 
derivative of the structural two-point function of the difference between the concentrations at two points of the 
isotropic turbulent flow with respect to distance at the zero value of this distance D~C0(0, t); the mean rate of 
dissipation of the energy of the turbulent velocity field e(t); the mean rate of dissipation of the intensity of scalar 
fluctuations Z(tO; the square of the dispersion of the scalar field c2(t). 

All the external parameters must be assigned. The evolution of the functions D~CV)(0, t), eft), x(t),  and 
c2(0 is associated with the evolution of the functions Pt(r) and ~C)(r), which are the distribution of turbulent 
energy and the intensity of scalar fluctuations over different length scales (see (127)-(131) in [1 ]), and the 
evolution of the function St/c(t) is associated with the evolution of the functions D'~CC(0, t), eft), Z(t) (see (56) 
in [1 ]). To calculate the functions Pt(r) and ~C)(r), we will avail ourselves of the closed system of equations 
(122)-(123) from [1 ]. Since the evolution of only a passive scalar field is studied, the last term in the equation for 
P(~)(r), characterizes the reaction on structure function, is not taken into which influence of chemical the of thi~ 
account. 

4. The System of Equations in Dimensionless Form. We define dimensionless variables by the following 
formula: 

.4 = 7t,4 c , ( 2 8 )  

where AC is the characteristic value of the variable A. We select the following characteristic values: Cc ffi I Cmax [, 
the magnitude of the concentration equal to its maximum value; LC, the length scale; f c  ffi 1/Cc,  the value of the 
single-point PDD; qc I" ~/q2(0), the magnitude of the velocity pulsation equal to the initial value of the root- 
mean-square velocity pulsation; tc = Lc /qc ,  the time equal to the time of one revolution of an energy-containing 
vortex; Xc " C~/tc ,  the magnitude of the scalar dissipation; e c = q2/ tc ,  the magnitude of the rate of dissipation 
of the turbulent velocity field; P(~) ffi C2/Lc,  the magnitude of the function P~C)(r); PC ffi q2c/Lc, the magnitude of 

the function Pt(r); (DLCC)C ffi qcC2c, the magnitude of the function DLCC(r, t); Pc ffi qcLc/D,  the Peclet number; 
Re -- qcLc/v ,  the Reynolds number; Sc ffi v /D,  the Schmidt number. 

The form of Eq. (27) for f t ( r )  does not change in dimensionless variables. Equations (127)-(131) from 
[1 ], which connect auxiliary functions with the functions Pt(r) and t~tC)(r), in dimensionless form are 

= -- r z ( t )  + - -  (r)  2 ( r  ) d r '  , 
5 Pe r Ot 0 0 

' 1 5  ' "-'CCr~(IV) (0, t) = 2P~ c)'' (0) , e (t) = ~ P t  (0)', 

(29) 
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s 

3_ p(c) c 2 (30) X (t) = Pe --t (0), (t) = ,7 p}C) (p) dp.  
0 

Using these formulas, it is possible to write Eq. (21) in dimensionless form. Omitting the bars over the 
dimensionless variables, we obtain 

0 [xt (r)/t (r)] = - ~ [x~ (r)zt ( r ) ] -  V r (e', C0)) S.c it)• 
Ot 0[ ̀2 

• 
Pe Xt ((__~)] 

1 3P~ c) Xt (F)ft (F) + 

27~ ~ (o) _ ^ 
tRe Sc 12 Nt (r) It (r) + 

# 

2P~ c) (0) --0 Ix (F ~) exp {-- a (7') ~2} Xt (F) ft 0r')J . (31) 
+ 1/2 OF 

Here the functions Nt(~') and x(F ~) are defined by Eqs. (22) and (24), and the expression for T(t) in dimensionless 
variables is represented as 

t 

p~C) (0) (32) 
r (t) = 

: ,o,) 
The functions Pt(P) and P~tC)(p) can be obtained by solving a coupled system of equations (see (122)-(123) 

in [ 1 ]) that in dimensionless form is 

ot = -#~ + 2r ~ et  -~  + et (P) , 
0 

0 

Here y - 0.24 and fl -- 1.08 are experimental constants. 
The system of equations (27), (31), (33), and (34) can be solved under the following boundary and initial 

conditions: 

3 p}C) 6 
Xt(F) I t = O = X o ( F ) = 2 0 1 -  I r l ) x ( O ) ( 1 - r Z ) ,  x ( O ) = ~  (o)[t=o = F ~ ;  (as) 

f t (r) l t= ~ =/o  (r) = o (1 - -  I r l )  / t ( r ) l  Irl=~ = o; 
~ r ~  ' 

(36) 

Pt (1 D) I t=O = PO 6 ~ = 2,o exp ( -  p2) , Pt (0) = 0,  

P t ( o o ) = O ,  P t ( P ) > 0  for 0 < p < ~ ;  

(37) 
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p}c) (o) l t= 0 = P(o c) 6o) = 2p exp ( -  p2) , p}C) (0) = O, 

p~C)(| p}C)(p)>O for O < p <  oo. 

(38) 

It is convenient to rewrite the system of equations (27), (31) for the functions st(F) and Ft(F), where Ft(F) 
F 

= f . f t (~)d~ is defined as an integral distribution function. Simple transformation of Eqs. (27), (31) leads to the 
o 

following system of equations for st(F) and Ft(F): 

02 
2 0Xt (F) = A (t) St (I') - B (t) St (F) - C (t) N t (F) - St (F) St ( r )  

Ot 0F 2 
+ 

+ ~ Ot +D(')O-O-~ 09) exp { -  a (T) F2} St(F)  , (39) 

OFt (F) O [S O ] 
at -- ~ t (F)  ~-~ F t (F)  , ( 4 0 )  

" 

where Aft) - -Suc ( t )q~ t~ ;  B ( t ) -  -Suc( t )q~-~/z( t ) ;  C(t) -21P~t c) (0) l / [ReSc]2;  D(t) - 2 t . 

5. Numerical Solution of the System of Equations for the CRSD and the Single-Point Probability Density 

Function. Taking into account the symmetry of the function Xt(F) and the asymmetry of the function Ft(I') with 
respect to the coordinate origin, we will consider half their domain of definition, 0 ~ F _< 1. The CRSD and the 

single-point distribution density function are specified by system of equations (39)-(40) with the boundary 
conditions 

aXt(I')[ =0 xt(r)lr=1=0; Ft(r)lr__0=0 Ft(r)lr= 1=1/2. 
T r--0 ' 

The selected system of variables Xt(F) and Ft(F) is more convenient for numerical solution than the 
variables xt(F)ft(F) and ft(F), since the first two functions are smoother. To solve this problem, it is necessary to 

know the functions of time Aft), B(t), C(t), D(t), Nt(F), xt(F), a(O,  and T(D. They are all defined in terms of 

the functions Pt(P) and P~tC)tp), for whose determination Eqs. (33) and (34) are given. 
The boundary  conditions for the integral distribution function are specified by the conditions of its 

normalization. The dispersion c2(t) and the mean rate of dissipation of scalar fluctuations S(t), which are calculated 
from the function P~tC)tp) by Eq. (30), can be calculated also as internal parameters of the problem by the formulas 

1 1 
C 2 (t) = 2 f F2ft (F) dr ' ,  S (t) = f x t  (F) / t  (F) dr ' .  (41) 

0 0 

The procedure for numerical solution of the boundary-value problem for the functions st(F) and Ft(F) is 

0 -Xt(I') 0~2F) ,  which formally look like terms with complicated by the presence of the terms - 0 r ' r L s / 4 1 ) T ] ,  Ot 

negative diffusion in the phase space of values of the scalar. This structure of the equations compels one to carry 
out the numerical calculation in the opposite direction in time. In the attempt to integrate the system of equations 
for st(F) and Ft(I') in the positive direction the numerical procedure turns out to be unstable, and the solution can 
be obtained only in a small interval of time (At < 0.1). Therefore all the results were obtained in numerical solution 

in the opposite direction in time from the "starting" distribution for the functions zt(l") and Ft(F) to the initial one. 
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Here the method of straight lines was used in the form of a standard numerical procedure; as is known, this method 

reduces the solution of partial differential equations to a system of ordinary differential equations written for grid 

functions. The convenience of using this method for the given problem consists in the fact that the magnitude of 
the time step is automatically adapted within the numerical procedure, which makes' it possible to cope with the 

problems of stability in domains of calculation in which the solution is close to singular, and, moreover, the integrals 

in auxiliary conditions (41) are found noniteratively at the next step. 
The presence of "antidiffusion" terms makes the problem for Eqs. (30), (40) similar to classical inverse 

problems. There is an extensive literature devoted to the theory of solving inverse problems [17-20]. However, 

there are few felicitous examples of numerical calculation of inverse evolutional (or retrospective) problems for 
rather large time intervals without the existence of a critical dependence on a regularization parameter, which, 

incidentally, often cannot be selected small enough not to change the solution itself. 

It is important to understand why Eqs. (39), (40) exhibit in "forward" solution the properties of an inverse 
problem, just like, by  the way, all similar formulations based on the use of Eq. (27). Actually, we recover 
information about the evolution of the PDDF using as a basis certain model coefficients (functions of time) in Eq. 

(39). These lumped parameters result from many factors, including, of course, the distribution function itself. In 
/C)Wtt 

our c a s e  the coefficients At(), Ctt), and Dtt) depend on P~tC)'(0), ~:~r~, and P~t ) (0) and, by virtue of equalities 

(30) and (41), on the distributions ft(I') and zt(F). Thus, the "forward" solution of Eqs. (39), (40) is the problem 
of reconstructing the form of the evolution of the PDDF from its effects. 

The solution of inverse problems by the method of "backward" computation is acceptable only when: a) the 

starting distribution is known; b) a definite form of the initial distribution is not given. Fortunately, in our case 

there is ample basis for the functions zt(l") and Ft(F) to be indicated at the end of the process of mixing. 
The selection of an analytical form for the "starting" values of the functions zt(F) and Ft(F) was based on 

the following considerations. The single-point distribution function It(F) has a Gaussian form at the end of the 
prooms of mixing. As is known, the approach of the single-point PDDF to a Gaussian form is associated with the 

fact that the CRSD becomes independent of the magnitude of the scalar [10 ]. Using this fact, it is possible to select 

a Gaussian form for the single-point PDDF and a form of the CRSD that is independent of the scalar-field 
magnitude as "starting" functions for the computation. Functions that satisfy these requirements are approximated 

by the following parametric dependences (starting values are denoted by the subscript s): 

1 - r ( 4 2 )  F s (F) fl F Z (ts) arctan - -  = ~ arctan ~ ,  Xt (F) = ~ ~, 

The parameters a and fl control the form of the distribution; moreover, the first must satisfy the boundary 

condition Ftl r= l  - 1/2, which leads to the transcenden_.tal equation arc(an ( l / a )  - a /  (2fl) - .0,  and the second is 
selected from the given value of the scalar dispersion c~ with account for the fact that fl = (c 2 + a2) /2 .  The small 

parameter ? (? - 0.01-0.001) in the starting distribution for t_he CRSD controls the degree of rounding-off of the 

stepwise distribution. Here the magnitudes of the dispersion cs 2 and the ra._.te of dissipation z(ts) were found below 
by solving the direct problem ("forward") for the function P~t c). For given Cs 2 and Z(ts) relations (42) determine only 

the known form of the distributions. 
6. Numerical Solution of the Problem for the Distributions over Length Scales. The equations that describe 

the evolution of the distributions of the kinetic energy of turbulence Pt(P) and the intensity of scalar fluctuations 

/~tc)(p) over the length scales r (33), (34) with initial and boundary conditions (37), (38) are solved by means of 

a Newton-type linearization procedure using an algorithm of matrix fitting for solr linear problems. These 

problems are well posed and are solved "forward," i.e., in the normal direction of time. The two problems are 

similar, and therefore we will describe only the procedure for solving one of them for p~C)(p). First, we reduce Eq. 

(34) to a system of first-order equations. It is integrated once with respect to p. As a result, we obtain an equation 

for the integral distribution function S~ c) = Pf P~C)dp: 
0 
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p=0 

P 
where ~ c ) .  2/Pe + 2~f p'/-P-~tdp. The squared dispersion of the scalar ff  is expressed in terms of the integral 

0 
o o  

distribution function as c -'1 = fo P~C)dp = s~C)[P=**" Integrating (34) with an infinite upper limit, we obtain an 

equation for ~:~: 
m 

6 

d--/-- P-~ ~ [p=O" 

The equation for the normalized integral distribution S (c) = slC)/~ :7" has the form 

Pe~ ot -  ~ + ~ - 6 ~ l p = o ( 1 -  " 

Introducing the variable ~o (c) = l~tC)/ p=0 ' we write a boundary-value problem for the functions 

c) c) c) o~c) 
~o(C)(t, p), S(C)(t, p), b "( (t, p) = ~ Pe, and/~ (t) = - ~ p  Ip=0: 

F(c) ( O ( p i o ( c ) ) )  PeOS (c) 
= . 0 ,  Op + 2r - 6 ( 1 - S  (c)) /o(C ) at 

ap -2~PeP~/ /o~~ Op ' dt - - 6 ~ c , 

p(c) lp=o = l ,  F (c) lp=0 = 2, s (~ = o ,  s (~  = 1 .  (44) 

Here the functions/0 = (OP/Op)[p -oand~o-P / (pO-~) ,  w h e r e P = P t / ~ P t d p ,  are determined from a 
0 

similar problem, solved preliminarily, for the distribution of the kinetic energy over the length scales Pt(P). 

The meaning of the introduction of the function ~(c) consists in the fact that in contrast to p(C) it is 
monotonic over the entire range of values of p and smoother, which facilitates numerical solution of the system of 

equations. The quantity P~) = O3p(C)I.=o / Op(c) 
Op3 - - ~  p=o is found by solving problem (44) as 

P~) = 3T (c)" Ip=O" (45) 

The rate of dissipation of fluctuations of the scalar Z is related to the quantity j~c) as 

3 ae(O[ 3 /o(C) 
Z -  P e T I p = o -  Pe " 

(46) 

The formulated problem (44) and a similar hydrodynamic problem were approximated according to purely 
implicit schemes in time. The boundary-value problems in p were solved at each time step. Usually, two-three 
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Fig. 2. Results of calculation of the system of equations (33)-(34): on the 
r 

left, the evolution of the functions P'o(t), P~C)(t); on the right, of the functions 
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Fig. 3. Results of solution of the system of equations (39)-(40). The change 

in the form of the integral distribution function (a) and the probability 
distribution density function (b): 1) t = 0, 2) 0.2, 3) 1, 4) 2.5, 5) 5, 6) 15, 
7) 25. 

iterations of Newton's method are required at each step. The algebraic problem for the grid equations was solved 
by the matrix-sweep method [21, 22 ]. 

Over the segment of dimensionless time (0, 30) the initial kinetic energy of turbulence and the energy of 

fluctuations of the scalar field decreased by about three orders of magnitude. Here  the maximum possible step of 
integration over t was of the order of 10 -3 at t = 0 and of the order of 0.2 at t ffi 30. 

7. Results of Numerical Solution of the System of Equations for the CRSD and the PDDF. The evolution 
of the kinetic energy q2(t) calculated from the distribution Pt(P) is shown in Fig. 1 (the problem for Pt(P) is similar 

in form to (44)). According to this figure, strong dissipation of energy begins at the instant t = 0.5. As is known, 

the dimensionless time t = 1 corresponds to one revolution of an energy-containing vortex. The dissipation of the 
intensity of scalar fluctuations, calculated by means of P~t c), is also presented in Fig. 1. The intensity of scalar 

fluctuations decreases more rapidly than q2(t). This is explained in the main by the fact that the constant/5 in the 
equation for Pt(P) is smaller (/5 = 0.24) than the constant y in the equation for p~C)(p) (7 = 1.08). Dissipation of 

c2(t) begins when t -0 .5 .  At this instant the mean dissipation of scalar fluctuations ~ ,  associated with the function 
P~t c)'(0), attains a maximum. Later the dissipation rate decreases gradually. The behavior of the function ~ is 
determined by the initial splitting of turbulent vortices and their subsequent dissipation. Figure 1 also shows the 

264 



x(r)  

~ . :  .. . . . . .  
~.'.~-'. . . . . . . . . . . . . . .  L. 

-1 -0.5 0 0.5 F -1 -0.5 0 0.5 F 

b 

Fig. 4. Evolution of the form of the conventional rate of dissipation at the 
initial (a) and intermediate and final (b) stages of mixing: 1) t = 0, 2) 0.5, 

3) 1, 4) 2.5, 5) 5, 6) 10, 7) 15, 8) 20, 9) > 25 (asymptotic state). 

evolution of the correlation function T2(t), which determines the dissipation of the dissipation in the equation for 
Zt(r). This function attains a minimum when the rate of dissipation is maximum. 

A more complex evolution is demonstrated by the function --/~tc)"(0). p~C)". Figure 2 shows that this function 

nonmonotonic and remains negative during evolution because of the proportionality of the function "'P~C)'" to the 
third derivative of the third-order two-point structural function D~CC(0, t) with respect to the variable p at p -- 0. 
This function with a negative sign in the equation for the mean square of the scalar gradient describes the 

enhancement of the scalar gradient due to inertial approach of liquid volumes with different scalar content [23 ]. 
The enhancement increases the mean square of the scalar gradient, and therefore the function must always be 

negative. 

Figure 2 also presents the evolution of the functions P0 and p~C)', which are directly associated with the 
rates of dissipation of turbulent fluctuations of the velocity and the scalar. We note that the main changes in the 

functions P'0, p~C)', and p~C)" are virtually synchronized in time. 
Figure 3a shows the evolution of the integral PDDF, which is calculated directly from the solution of the 

system of equations (39)-(40). The evolution of the single-point PDDF is presented in Fig. 3b, from which it is 

seen that the initial form of the single-point PDDF (curve 1) looks like a sum of two J-functions: at F = 1 and at 
I" - - 1 .  This form of the PDDF reflects the state of complete nonmixing of the scalar field typical of the start of 
the process of mixing. The flat nonzero portion between the points F = _ 1 reflects the presence of a certain small 

portion of mixed liquid. This fraction increases with increase in the time of mixing (curve 2). However, the form 
of the single-point PDDF remains the same and reminiscent of the distribution of probabilities typical of sinusoidal 
realization of a scalar field. As pointed out in [12], this form of the PDDF is associated with the presence of 

diffusion layers in the turbulent flow at the initial stage. The PDDF in the form of curves 3 and 4 demonstrates 

the appearance of a greater portion of mixed liquid in the flow. Along with the peaks of the function at r = _+ 1, a 
noticeable maximum appears at r - 0 due to an increase in the fraction of mixed mixture in the flow. The 

corresponding dependences of the integral function Ft(F) demonstrate this process by an increase in the inclination 
in the middle portion of the curve. On curves 5, 6 (Fig. 3b) this maximum is more pronounced, and the peaks of 
the function at F = _ 1 remain quite appreciable, i.e., the curves of the PDDF have a twb-mode form at intermediate 

stages of mixing, which reflects the simultaneous presence of a mixture mixed to the molecular level and unmixed 
fragments of liquid in the flow. 

At a later stage the PDDF acquires a single-mode form with a maximum at r = 0, which corresponds to a 

state close to complete mixing. It is not possible to carry out a calculation in the case of a still more peaked form 
of the PDDF because of the presence of extremely large gradients of this function (see also the shape of the 

corresponding curves of the integral function in Fig. 3a). 
The main feature of the result obtained in calculation of the single-point PDDF of a scalar is the 

manifestation of a two-mode form at intermediate stages of mixing by this function. The presence of maxima at I" 
= • 1 and F = 0 corresponds to the simultaneous presence of unmixed scalar and mixture mixed to the molecular 
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level in the flow. This feature of the PDDF cannot be reconstructed by means of direct numerical simulation (DNS), 
evidently because of the very small Reynolds and Peclet numbers at which DNS of turbulent velocity and scalar 

fields is realized. This property also cannot be reconstructed by the majority of the proposed models on the use of 
averaged characteristics of turbulence. 

The two-mode character of the PDDF was noted in the experimental work [24 ] and the theoretical works 

[25, 26 ], with [25 ] being based on simulation of turbulent mixing by a simplified velocity field and [26 ] being 
associated with account for the multiscale character of turbulent mixing. 

As is seen from the results obtained, the present model, which uses the evolution of the CRSD to calculate 

the single-point PDDF, evidently also takes into account the multiscale character of turbulent mixing. 

Curves for the conventional rate of scalar dissipation at different stages of turbulent mixing are shown in 
Fig. 4. A parabola with a maximum at I" ,- 0 figures as the initial form of the CRSD (curve 1). This form of the 

CRSD corresponds to sinusoidal realizations of the turbulent scalar field, whose presence in the flow is associated 
with the presence of diffusion layers there that separate regions with a homogeneous content of the scalar. 

At subsequent stages of mixing, when 5 < t < 15 (curves 3, 4) the CRSD becomes nearly fiat in its middle 

portion between the points F - _+ 1. This is possibly due to the fact that typical realizations of a scalar turbulent 
field acquire an almost sawtoothed shape, so that most of the time the fields of the scalar and its gradient remain 

almost uncorrelated. 
At a later stage of turbulent mixing, when t > 15 (Fig. 4b), the curve of the CRSD becomes similar in its 

middle portion to a parabola with a minimum at F - 0. It is possible to assume that this form of the CRSD is due 

to enhancement of typical realizations of the scalar field in such a manner that the maximum of the gradient is 

observed at large values of the scalar field and, as a result, leads to a strong correlation of the scalar and its gradient. 
Further evolution of the process of mixing imparts an almost flat shape to the CRSD curve at intermediate values 

o f  F (curve 9). This form of the CRSD can be attributed to loss of marked correlation of the scalar field and its 
gradient at almost all the values of I'. At this stage the form of the single-point PDDF starts to resemble a Gaussian 
one. Probably, this is due precisely to the fact that the CRSD in Eq. (27) for ft(I') becomes independent of the 

magnitude of the field I'. 

Note that the obtained sequence of forms of the CRSD is in satisfactory qualitative agreement with results 
of its calculation on the basis of DNS in [12] and with data of the experimental works [13-15]. 

Conclusion. A closed system of equations for the CRSD and the single-point PDDF of the values of scalar 
fluctuations is derived on the basis of the closed equation for the JPDF of the magnitudes of the scalar and its 

gradient obtained by the authors. 

In the derivation we used the hypothesis of equality of the mean square of the CRSD to the squared mean 

value of the CRSD. All the time-dependent coefficients A(t), B(t), C(t), D(t), and T(t) that enter the equation for 
the CRSD are expressed in terms of the functions Pt(P) and/~tc)cp), for which a closed system of equations is 

written. 

Numerical solution of the system of equations for zt(F) and/ t (F)  is realized in the reverse direction in time 
starting from the final "starting" values of these functions to the initial ones, which made it possible to overcome 

serious problems associated with the presence of terms with "negative diffusion" in the equations forzt(F) and ft(F). 
The solution of the system of equations for the functions PreP) and/~tc)(p) is realized in the forward direction in 

time starting from their initial values. 

The evolution of the single-point PDDF ft(F) obtained as a result of the solution manifests a two-mode 
form at the intermediate stage of the process of turbulent mixing, which is in qualitative agreement with experiment 
and is obtained theoretically for the first time. 

The sequence of forms of the  function xt(F) obtained in the numerical solution is in satisfactory agreement 
with results of DNS of a turbulent scalar field and with data of existing experiments.' 

The closed model suggested for calculating the functions xt(F) and fT(F) can be used in the calculation of 

chemical reactions in turbulent flows and processes of turbulent combustion within the framework of the flamelet 

approach. 
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